Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
145 changes: 65 additions & 80 deletions impc_etl/jobs/load/impc_kg/gene_phenotype_association_mapper.py
Original file line number Diff line number Diff line change
@@ -1,94 +1,79 @@
import luigi
from impc_etl.jobs.load.impc_bulk_api.impc_api_mapper import (
to_camel_case,
ImpcGenePhenotypeHitsMapper,
)
from luigi.contrib.spark import PySparkTask
from pyspark import SparkContext
from pyspark.sql import SparkSession

from impc_etl.jobs.load.impc_kg.impc_kg_helper import add_unique_id
from impc_etl.workflow.config import ImpcConfig
"""
Module to generate the gene-phenotype association data as JSON for the KG.
"""
import logging
import textwrap

from airflow.sdk import Variable, asset

class ImpcKgGenePhenotypeAssociationMapper(PySparkTask):
"""
PySpark Task class to parse GenTar Product report data.
"""
from impc_etl.utils.airflow import create_input_asset, create_output_asset
from impc_etl.utils.spark import with_spark_session

#: Name of the Spark task
name: str = "ImpcKgGenePhenotypeAssociationMapper"
task_logger = logging.getLogger("airflow.task")
dr_tag = Variable.get("data_release_tag")

#: Path of the output directory where the new parquet file will be generated.
output_path: luigi.Parameter = luigi.Parameter()
genotype_phenotype_hits_json_asset = create_input_asset("output/impc_web_api/gene_phenotype_hits_service_json")

def requires(self):
return [ImpcGenePhenotypeHitsMapper()]
gene_phenotype_association_output_asset = create_output_asset("/impc_kg/gene_phenotype_association_json")

def output(self):
@asset.multi(
schedule=[genotype_phenotype_hits_json_asset],
outlets=[gene_phenotype_association_output_asset],
dag_id=f"{dr_tag}_impc_kg_gene_phenotype_association_mapper",
description=textwrap.dedent(
"""
Returns the full parquet path as an output for the Luigi Task
(e.g. impc/dr15.2/parquet/product_report_parquet)
PySpark task to create the Knowledge Graph JSON files for
gene-phenotype associations from the impc_web_api gene_phenotype_hits_service_json data.
"""
return ImpcConfig().get_target(
f"{self.output_path}/impc_kg/gene_phenotype_association_json"
)
),
tags=["impc_kg"],
)
@with_spark_session
def impc_kg_gene_phenotype_association_mapper():

def app_options(self):
"""
Generates the options pass to the PySpark job
"""
return [
self.input()[0].path,
self.output().path,
]
from impc_etl.jobs.load.impc_web_api.impc_web_api_helper import to_camel_case
from impc_etl.jobs.load.impc_kg.impc_kg_helper import add_unique_id

def main(self, sc: SparkContext, *args):
"""
Takes in a SparkContext and the list of arguments generated by `app_options` and executes the PySpark job.
"""
spark = SparkSession(sc)
from pyspark.sql import SparkSession

# Parsing app options
input_parquet_path = args[0]
output_path = args[1]
spark = SparkSession.builder.getOrCreate()

input_df = spark.read.json(input_parquet_path)
input_df = add_unique_id(
input_df,
"parameter_id",
["pipelineStableId", "procedureStableId", "parameterStableId"],
)
input_df = add_unique_id(
input_df, "phenotyping_center_id", ["phenotypingCentre"]
)
input_df = add_unique_id(input_df, "mouse_gene_id", ["mgiGeneAccessionId"])
input_df = add_unique_id(input_df, "mouse_allele_id", ["alleleAccessionId"])
input_df = input_df.withColumnRenamed("id", "genePhenotypeAssociationId")
input_df = input_df.withColumnRenamed("datasetId", "statisticalResultId")
output_cols = [
"genePhenotypeAssociationId",
"alleleAccessionId",
"phenotyping_center_id",
"statisticalResultId",
"effectSize",
"lifeStageName",
"mouse_gene_id",
"pValue",
"parameter_id",
"phenotype",
"projectName",
"sex",
"zygosity",
"mouse_allele_id",
]
output_df = input_df.select(*output_cols).distinct()
for col_name in output_df.columns:
output_df = output_df.withColumnRenamed(
col_name,
to_camel_case(col_name),
)
output_df.coalesce(1).write.json(
output_path, mode="overwrite", compression="gzip"
input_df = spark.read.json(genotype_phenotype_hits_json_asset.uri)
input_df = add_unique_id(
input_df,
"parameter_id",
["pipelineStableId", "procedureStableId", "parameterStableId"],
)
input_df = add_unique_id(
input_df, "phenotyping_center_id", ["phenotypingCentre"]
)
input_df = add_unique_id(input_df, "mouse_gene_id", ["mgiGeneAccessionId"])
input_df = add_unique_id(input_df, "mouse_allele_id", ["alleleAccessionId"])
input_df = input_df.withColumnRenamed("id", "genePhenotypeAssociationId")
input_df = input_df.withColumnRenamed("datasetId", "statisticalResultId")
output_cols = [
"genePhenotypeAssociationId",
"alleleAccessionId",
"phenotyping_center_id",
"statisticalResultId",
"effectSize",
"lifeStageName",
"mouse_gene_id",
"pValue",
"parameter_id",
"phenotype",
"projectName",
"sex",
"zygosity",
"mouse_allele_id",
]
output_df = input_df.select(*output_cols).distinct()
for col_name in output_df.columns:
output_df = output_df.withColumnRenamed(
col_name,
to_camel_case(col_name),
)
output_df.coalesce(1).write.json(
gene_phenotype_association_output_asset.uri, mode="overwrite", compression="gzip"
)